weareparts logo

1-888-4-BLADES (425-2337)

FREE SHIPPING ON Qualifying Orders

12 songs to make your crops grow taller

April Fools’!  

The truth is that some scientists DO believe there’s a connection between music – specifically the vibrations created by certain soundwaves – and plant health.  Studies are ongoing all over the world to discover how plants use sound waves to ‘learn’ about their environment and adapt to certain conditions.

For right now, the only way to stimulate optimal growth of agricultural crops and ensure a bumper yield is to take good care of the soil, and make sure your seeds are planted well – and at Wearparts, we can help with that!  Check out our range of quality tillage and planting parts here.

Of course, we know that humans thrive on good music, so here’s a playlist of the best farming-themed songs to enjoy next time you’re in the truck or tractor cab!

  1. Thank God I’m a Country Boy – John Denver
  2. Alabama Clay – Garth Brooks
  3. Heartland – George Strait
  4. Hard Way to Make an Easy Living – Toby Keith
  5. Where Corn Don’t Grow – Travis Tritt
  6. Where the Green Grass Grows – Tim McGraw
  7. Daddy Won’t Sell The Farm – Montgomery Gentry
  8. Rain is a Good Thing – Luke Bryan
  9. Here’s To The Farmer – Luke Bryan
  10. International Harvester – Craig Morgan
  11. John Doe on a John Deere – Lonestar
  12. Amarillo Sky – Jason Aldean

Want to know more about how Wearparts helps farmers work smarter, for better yields and bigger profit margins?  Contact us today, or find your nearest Wearparts dealer.

Autonomous Agriculture Vehicles: Future of Farming | Wearparts

Autonomous agriculture vehicles – the future of farming?

If you were born before 1995, you probably grew up thinking that by now, we would all have flying cars and robotic servants attending to our every need.

In reality, technology has advanced more slowly than the kids of the 70s and 80s thought it would. But we’re still seeing some incredible progress, particularly in automation. 

A hot topic in the agriculture industry right now is the potential of autonomous agriculture vehicles to revolutionize farming.

Autonomous agricultural vehicles include everything from drones that can take soil samples and monitor crops from the air to robotic seed planters that can plant and fertilize in a single pass, to autonomous tractors that can literally give farmers extra hours in the day.  

Autonomous farm vehicles have been generating a lot of interest since John Deere launched the world’s first fully autonomous tractor in Las Vegas in 2022 – so let’s take a look at this technology, and what it could mean for the future of farming.

What is an autonomous tractor?

An autonomous tractor is a driverless tractor that can be programmed and controlled by computer, so it doesn’t need a human driver in the cab. 

John Deere has been pioneering autonomous tractor technology after launching the 8R410 – although what they actually launched was not an all-new tractor, but technology that could make an existing 8R autonomous.  

This included fitting the vehicle with 12 stereo camera pods and making some changes to its transmission.  As a result, the company says this technology will eventually be available for retrofitting to certain John Deere models, with the tractors able to be driven manually or autonomously.

Interest in the technology has been high because of significant labor shortages in the American agriculture industry and the length of time farmers currently have to spend sitting in their tractor cabs to perform large-scale operations such as tilling or cultivating.

How do autonomous tractors work?

Autonomous tractors work by using Satellite GPS and other advanced electronic controls without requiring a driver present. 

In fact, much of this technology has already been in use for some time – the only difference is that in an autonomous tractor, the onboard computer systems can be controlled remotely, using a computer or mobile app.  This is combined with a number of onboard GPS-enabled cameras and radar technology that allows the vehicle to ‘see’ where it’s going, and avoid obstacles.  

The tractor can be programmed to follow a specific course, at a specific speed, with its operations tailored to suit the terrain, weather conditions and task being performed.

As the farming industry becomes ever more competitive, the autonomous capabilities and extreme precision offered by self-driving tractors is likely to fuel growing demand for the technology.

What are the benefits of autonomous tractors?

Autonomous tractors can save farmers a significant amount of time, given that they can spend up to 15 hours a day sitting in a tractor cab at key times of the year.  

Driverless tractors allow farmers more time to focus on other work, increasing productivity on vital farming operations.  These autonomous vehicles can also work at any time – including through the night, when workers are asleep.
For large-scale farms, autonomous technology holds a possible solution to increasing labor shortages – a problem that’s on the rise due to change in US immigration policy.  Driverless tractors may also hold the key to helping US farmers feed a growing global population despite dwindling human resources.

Precision agriculture

Precision is another key benefit of automated vehicles, which eliminates human error that can push farming costs up.  The technology could even have long-term benefits for the soil.  

Farmers currently choose the biggest machines they can afford to get the most amount of work done in the least amount of time. 

But take away those time constraints, they could perform the same task with smaller machines, reducing ecosystem disturbances and soil compaction.

Eventually, it could be the case that even the largest farms can operate a fleet of small, automated machines instead of a few huge ones.

What are the downsides of autonomous tractor technology?

The biggest obstacle to adoption of autonomous tractor technology is currently the cost. 

Although innovations such as John Deere’s retrofitted technology are aimed at reducing capital costs, and other factors – such as labor savings – this will undoubtedly mitigate them too. 

New technology safety concerns

There’s been a lot of debate around whether autonomous tractors are safe – what happens if a driverless vehicle becomes uncontrollable? Who will be liable for the damage?  Again, advances in technology are all about easing these concerns.  

Deere’s autonomous tractor for example, is programmed to stop if it detects an unexpected obstacle closer than 90 feet away – and will alert the farmer to perform a safety check or re-route before moving off again.  The vehicle will also stop if its cameras or GPS systems go offline for any reason (though this can be a drawback if you farm in a cellular data blackspot).

Artificial intelligence use could impact jobs

There’s the suspicion that is currently impacting all industries – what will this mean for human jobs?  It’s true that the use of autonomous agricultural vehicles could affect seasonal workers. But the type of jobs that can currently be carried out by driverless tractors is limited, so for now those jobs are likely safe.  

In the future, it’s likely that autonomous vehicles will be able to do much more. With seasonal farm labor already in short supply, and dwindling numbers of young people coming into the farming profession, autonomous technology is likely to solve more problems than it creates.

Are automated vehicles the future of farming?

Autonomous tractors have a long way to go before they are widely adopted on US farms. 

But other types of autonomous agriculture vehicles – such as drones – that were once regarded as a fad, have now become widely used and hugely valuable for farmers.  

While there will always be those that prefer to do things the conventional way, it’s very likely that many will eventually embrace autonomous tractors and other autonomous machines in the same way.  

As farming becomes more challenging due to climate change, labor shortages and rising costs, it’s possible that autonomous technology holds the key to global food security in the future.

Anatomy of Wearparts seed opener blades

Investing in precision seed opener blades is probably one of the best things you can do to ensure successful germination and high yields from your 2023/4 crops.

Quality seed openers will open a clean, v-shaped furrow, working in tandem with gauge wheels to ensure minimal soil displacement for excellent seed-to-soil contact, minimizing the risk of air pockets that can lead to seed failures and losses due to disease.

Seed opener blades might look more or less the same, but they’re not all created equal.   Wearparts seed openers are created in partnership with the renowned manufacturer Forges de Niaux in France, and have evolved in response to real feedback gathered from real farmers.  This means that our seed openers have some unique features and advantages that can give you the edge.

Every seed opener blade assembly is effectively made up of the same component parts.  On a row unit, there are two blades with beveled edges – these can be notched or smooth.  Each blade has a central assembly or housing that contains the bearing – this allows the blade to turn.  The bearing is pressed into the housing and then secured to the blade with a series of rivets.  The blade is then bolted to the frame of the planter.  Blades are mounted in pairs and angled so that they are touching right at the point of deepest contact in the soil.  This creates a precise, v-shaped furrow.  A seed then drops down into the furrow via the seed tube, which is positioned just behind the seed opener blades.

Key features of a seed opener

The seed opener has one job: to create the perfect furrow conditions for seed germination.  This means it needs to cut through any surface trash, penetrating to the ideal depth and ensuring the furrow is clean, ready to receive the seed before being closed over again.

For this reason, there are three key features of any seed opener – precision, sharpness and durability.

  1. Precision

Precision is important during the manufacturing of the blade, both in terms of the flatness of the profile and the attachment of the bearing hub/housing.  If the steel is in any way warped, or if the housing is not absolutely centered, the blade will not run true.  This will result in unacceptable levels of ‘wobble’ in the blade when it runs on your planter.  The resulting furrow will be uneven in width, and may be unstable.  The blade will wear unevenly around the circumference, which will result in irregular furrow depth.  We test all our seed opener assemblies in-house to some of the tightest runout tolerances in the industry.

  1. Sharpness

The sharpness of a seed opener blade is vital for ensuring the blade can cut through surface trash and achieve the optimal depth for seed placement.  It’s also important where dry soil conditions are prevalent, in order to minimise the amount of downward force necessary for the blades to penetrate the soil.  This reduces drag and fuel consumption costs.  It’s also important that blades stay sharp as they wear down, so that the shape of the furrow stays consistent right up until the point where the blades have to be changed.  The length and angle of the bevel on the blade can impact on how well a blade wears down.

  1. Durability

Durability and sharpness or hardness are closely linked.  A harder edge on a blade will naturally be more durable; it will wear down more slowly and withstand hard or rocky soil for longer, which means less downtime spent changing blades and ultimately, a lower cost per acre.  The overall durability of a seed opener blade also has an agronomic impact – a more durable blade is less likely to break or crack and can cope better with tough ground conditions so again, you spend more time planting and less time changing out damaged blades.

How are Wearparts seed openers different?

Wearparts seed opener blades have some subtle difference from the standard blade specification.  These have been developed in direct response to what farmers told us they wanted in a seed opener blade, and designed to increase efficiency in the field.

You’ll notice that images of our blades or indeed sample products at your local dealership have a distinct ‘pie slice’ illustration on the face of the blade, which hints at one of the biggest differences – the fact that our blades are heat treated to achieve a harder spec on the edge.  We also offer a longer bevel, plus a larger bearing and rivets.  Let’s take a look at the key benefits of each:

  1.  Heat treated boron steel 

The heat treatment process on our boron steel seed opener blades has the effect of creating variable hardness in different areas of the blade.  Our blades have three zones of hardness as indicated by the ‘pie slice’ decals we apply to our sample products.  

During the hardening process, extreme heat is applied to the outer edge of the boron steel blade.  This causes structural changes in the carbon structures within the steel.  The hardest zone is indicated by the red section of our pie slice, which is rated 55-58 HRC on the Rockwell scale and has been designed specifically to offer a longer wear life on the ground-engaging portion of the blade.

The middle part of the blade naturally also heats up during this process, but the temperatures reached are slightly lower.  This zone is highlighted in orange, and is harder than non-treated steel, but still retains a degree of flexibility (50-55 HRC).

The inner zone closest to the hub is highlighted in blue.  This zone does not reach high enough temperatures during the hardening process for those structural carbon changes to take place, so this area of the blade remains in its natural, flexible state (49-50 HRC).  This is important because while the cutting edge is exposed to wear from the soil, the center of the blade is exposed to the highest levels of stress from the weight of the machinery and the drag of the soil, making the zone closest to the hub more prone to breakage.  Retaining the flexibility here reduces this risk.

  1. Larger bearing and rivets

Because the hub of the blade is where the greatest force is concentrated within the seed opener assembly, we’ve developed a larger hub with larger, stronger rivets.  This spreads the force over a larger surface area, reducing the risk of breakage.

We use high-quality PEER bearings for our seed openers, with the option of a split or solid inner race.

  1. Longer bevel

The bevel is the graduation of the blade edge from its full thickness (usually 3-4mm) to the actual cutting edge.  The length of the bevel on a 15-inch blade is usually somewhere around a half inch and typically, by the time the bevel is worn halfway down, the blade has become too blunt to penetrate the soil.  Our longer bevel means the blade stays sharp right up until the point where it needs to be changed and is able to maintain appropriate contact with its neighbouring blade, so you get more acres out of every pair.

To find out more about our market-leading seed opener blades, get in touch – or better still, visit your local Wearparts dealer, where you can see the difference for yourself!  Find your nearest dealer here.

You ain’t seen nuttin’: Peanut blades to maximize yields

Peanut season is well underway for farmers in the southeast, with record high yields forecast in a number of states and prices remaining favorable, hinting at a bumper crop for many producers – especially those that have invested in quality equipment to help maximize their harvest.

Groundnuts need warm weather conditions to mature, and coupled with the drought conditions commonly found across peanut-growing regions of the US, this often results in challenging soil conditions come harvest time.

In optimal conditions, a digger proceeds along the rows of peanut plants driving a horizontal blade four to six inches under the soil to loosen the plant and cut the taproot before shaking and inverting for drying.

But dry, hard soil pushes peanut diggers to the limit, making it harder for blades to cut at the required depth. If the taproot isn’t severed, roots will be dragged along by the digger and pods dislodged, resulting in digging losses. Of course, hard ground dulls blades faster, increasing the chance of losses and resulting in significant downtime caused by the need to change blades frequently in the field.

So how can Wearparts peanut blades help farmers to get more peanuts into storage, and faster?

The answer is simple: superior sharpness and a longer wearlife that makes short work of hard, dry ground.

Our aftermarket peanut blades are manufactured from boron steel for additional strength and a longer wear life, and are compatible with commonly-used peanut digging machinery including KMC and Amadas machines.

While it’s common to assume that OEM parts are always better quality, testing shows that Wearparts peanut blades are superior to their OEM equivalent, with 10% more material contributing to a lower risk of breakage and more acreage covered between blade changes.

What’s more, Wearparts offers in-house hardfacing services that further extend the wearlife of our peanut blades.

We hardface using the CMT (cold metal transfer) process, which produces a lot less heat than conventional welding processes. As a result, CMT welding does not dilute the base metal or affect its strength, brittleness or integrity in any way. The CMT process ensures consistent metal deposition from the beginning to the end of the process, which means better edge retention (blades stay sharper) and a more even wear pattern over time.

How much longer do Wearparts peanut blades last?

It’s impossible to give an average acreage per blade since conditions vary widely from state to state – and sometimes within a single farm or field. However, our own field tests indicate that farmers using Wearparts peanut blades can typically expect to get 25-30% additional wearlife compared to the equivalent OEM blades.

That means less time spend under the peanut digger changing blades, and more time spent digging rows for an optimal harvest when the time is exactly right – as it is right now, across America’s southwest.

Wearparts peanut blades are in stock and available now from dealers across the US peanut growing regions, and we offer expedited shipping for dealers needing to get stock in fast to meet the demands of this year’s harvest.

To find out more, or to enquire about becoming a Wearparts dealer, get in touch!